手机浏览器扫描二维码访问
第一陈类大于零的复流形也叫作法诺流形,这类流形比第一陈类小于零的流形相对来得少,其内容也远不如后者丰富,例如复一维情形只有一个球面,而复二维的流形从拓扑来看也只是复投影空间吹大几个点。
更有意思的是代数几何中研究这类流形的工具也远比微分几何的方法强大,特别是1979年森重文(Mori)在法诺流形上用有限域的技巧发现的有理曲线存在性,这是迄今为止微分几何方法一直无法超越的天才发明。
以此为工具,代数几何学家对法诺流形几何的了解走在了微分几何研究的前面。
这种情况与第一陈类小于和等于零的情形形成了鲜明的对比,这两类流形包含比法诺流形丰富得多的例子,而由于丘成桐证明的卡拉比猜想,在这些流形的研究中,微分几何的方法和工具更强大也更有效。
这里我们还要注意到,正如唐纳森等人在他们的文章中所阐述的,K-稳定性并不是一个容易验证的条件,其实用性也与丘成桐所证明的卡拉比猜想相差甚远。
目前他们所证明的丘成桐猜想唯一有意思的推论还是丘成桐所指出的,K-稳定形可以推出切丛的稳定性。
所以即使K-稳定性等价于Kahler-Einstein度量的存在性的猜想得到证明,其重要性也需要在日后的应用中才能得到检验。
而丘成桐本人则在勾画了他的猜想的证明纲领后,便将题目交给了他的学生和朋友,一方面他认为他的猜想虽然重要,但与他证明的卡拉比猜想相比还是有很大的距离,另一方面他认为弦理论引发的数学问题要比他自己的猜想更具挑战性,也有更大的潜力。
事实上,他和他的学生与博士后在Calabi-Yau流形上的工作已经在近代数学中开创了一个新的重要研究方向。
至于丘成桐猜想证明的正确性和其在几何学中的前景,只有他这个开创者和专家才有资格来评判了。
喜欢数学心请大家收藏:(aiquwx)数学心
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
白茶自幼体弱多病。她人生最常收到的,是来自他人同情。她不喜欢,但无法不承认她的身体几乎什么都做不了,所以不能矫情,因为别人都在帮她。直到室友的快递将她送进了一场无限恐怖游戏。正在检测初始人物特征,...
路漫漫其修远兮,吾将上下而求索。洪武偶然之下得到了宇宙之心,它能以各个电影电视剧等为蓝本演化世界。洪武经历了古今中外诸多世界,在红尘中磨砺自身武学,最后站在了世界之颠。原来如此!宇宙的奥秘尽数显现在洪武的眼前,大道至简,古人诚不欺吾。就让洪武带领大家领略各个世界,一起洞彻武道和宇宙的奥秘!PS以作者的设定为准。...
[最野的玫瑰,躁动无人区]初见,温弦一眼就看中了陆大队长。垂涎欲滴。温弦嗯?怎么才能泡到你?是麻袋还是甜言蜜语。陆枭叼着烟,冷漠道你是风光大明星,我是这鸟不拉屎无人区的队长,穷得很,你看中我什么?温弦我喜欢看你是怎么顶撞我的。陆枭一哽。燥了脸,无情走人不知羞耻,想都别想!隔天。他心血来...
一本超搞笑的甜宠文曾是多个网站年度霸榜大爆文。出版名为大四女生林小溪在公园意外救下心梗老人,成了大佬全家的恩人,连大佬都得敬她三分!一世英名,毁于一朝进错房间,爬错床!从此开启了跟大佬先婚后爱,斗智斗勇的搞笑姻缘!第一次见面,暑假子公司实践,在电梯口将大佬当成维修师傅。结果从公司里涌出一群人恭敬道李总!第二次见...
穿越者回归,各种异界大佬们在店里面的碰撞,一拳轰爆星球的人,在店里面也只能够乖乖听主角的...
百度各大贴吧以及LOL盒子论坛一天回复破三万的神贴!黑岩历史上的第一个皇冠获得者,正是本书!!!直播玩LOL时认识了一个妹子,她说她从来不上厕所,约出来见面后,我吓尿了。...