手机浏览器扫描二维码访问
屋子里,徐云正在侃侃而谈:
“艾萨克先生,韩立爵士计算发现,二项式定理中指数为分数时,可以用e^x=1+x+x^22!+x^33!+……+x^nn!+……来计算。”
说着徐云拿起笔,在纸上写下了一行字:
当n=0时,e^x>1。
“艾萨克先生,这里是从x^0开始的,用0作为起点讨论比较方便,您可以理解吧?”
小牛点了点头,示意自己明白。
随后徐云继续写道:
假设当n=k时结论成立,即e^x>1+x1!+x^22!+x^33!+……+x^kk!(x>0)
则e^x-[1+x1!+x^22!+x^33!+……+x^kk!]>0
那么当n=k+1时,令函数f(k+1)=e^x-[1+x1!+x^22!+x^33!+……+x^(k+1)(k+1)]!(x>0)
接着徐云在f(k+1)上画了个圈,问道:
“艾萨克先生,您对导数有了解么?”
小牛继续点了点头,言简意赅的蹦出两个字:
“了解。”
学过数学的朋友应该都知道。
导数和积分是微积分最重要的组成部分,而导数又是微分积分的基础。
眼下已经时值1665年末,小牛对于导数的认知其实已经到了一个比较深奥的地步了。
在求导方面,小牛的介入点是瞬时速度。
速度=路程x时间,这是小学生都知道的公式,但瞬时速度怎么办?
比如说知道路程s=t^2,那么t=2的时候,瞬时速度v是多少呢?
数学家的思维,就是将没学过的问题转化成学过的问题。
于是牛顿想了一个很聪明的办法:
取一个”
很短”
的时间段△t,先算算t=2到t=2+△t这个时间段内,平均速度是多少。
v=st=(4△t+△t^2)△t=4+△t。
当△t越来越小,2+△t就越来越接近2,时间段就越来越窄。
△t越来越接近0时,那么平均速度就越来越接近瞬时速度。
如果△t小到了0,平均速度4+△t就变成了瞬时速度4。
当然了。
后来贝克莱发现了这个方法的一些逻辑问题,也就是△t到底是不是0。
如果是0,那么计算速度的时候怎么能用△t做分母呢?鲜为人...咳咳,小学生也知道0不能做除数。
到如果不是0,4+△t就永远变不成4,平均速度永远变不成瞬时速度。
按照现代微积分的观念,贝克莱是在质疑lim△t→0是否等价于△t=0。
这个问题的本质实际上是在对初生微积分的一种拷问,用“无限细分”
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
我是一个灾星,刚出生就克死了奶奶,爷爷以前是个道士,为我逆天改命,却在我二十岁生日那天离奇死亡。临死前,他将一本名为登真隐诀的小黄书交给了我,却让我四年后才能打开...
狂少归来,只手遮天。叶修遭遇女友背叛,受人冷眼,却在此时非凡身世曝光。从此鱼跃成龙,逍遥都市。...
她不就想嫁个人吗?怎么就那么难?她自认自己长得不差,千金小姐该会的她一样不少,可年岁已到,竟一个上门来提亲的都没有!难道是自己不小心暴露了本性,把那些男人都给吓到了?小姐,梁王府的沐世子来提亲了!唉,算了算了,就他吧,也没得可挑了。得知真相之后,她揪着他的衣领声音悲愤,你个黑心黑肝的,还我的桃花!怪不得从小...
荆柯守出品若生为林木,我当欣欣以向荣。若生为幽草,我当萋萋而摇绿。就算是一根小草,也不必羡慕大树伟岸参天,我依然可以长成一片碧绿德鲁伊之心,就是自然...
时停千年,文明不再,钢筋城市演变成了野兽丛林,面对如山高的怪物,人类能依赖的,只有手上一套来历不明的卡组。...
请不要用你的年薪来挑战我的零花钱,因为我一个月一千万零花钱!...