手机浏览器扫描二维码访问
对于一个包含至少2个集合的、对并运算封闭的有限集合族,至少存在一个元素,使得它在至少一半的集合里出现过。
我们来解读一下这个猜想说的啥。
首先集合,就是包含了一系列元素的合集,这里面的元素既可以是数字,也可以是变量等。
例如这是一个我们常见的数集,而且是有限的(只包括3个元素):{1,2,3}
至于无限数集,就像是自然数集、有理数集、整数集这种由无限个元素组成的集合。
当然,集合也有集合,它们组合起来,就可以被叫做集族,例如下图中F就是一个集族:
在这些集族中,有一类特殊的集族对并运算封闭。
对集族中的集合而言,并运算就是对两个集合求并集;至于并运算封闭,即是指在对任意两个集合进行并运算后,其结果仍然在这个集族中。
以下面这个集族为例:{1}{1,2}{1,2,3}{1,2,3,4}
无论是对{1}、{1,2}求并集,还是对{2,3,4}、{1}求并集,还是对{1,2}、{2,3,4}求并集……任意两个集合求并集,其结果都会在这个集族中。
所以,上面这个集族就符合并封闭集合这一要求,而并封闭猜想也正是基于此而提出。
值得注意的是,这一猜想中的“一半”
是紧致的,毕竟对于任何一个集合的子集族,所有的元素恰好在一半的集合里出现过。
它于1979年被一个叫PéterFrankl的数学家提出,所以也一度被叫做Frankl猜想。
看起来似乎不难,然而到实际解决时,一众数学家才发现这并不简单。
达特茅斯学院数学教授PeterWinkler曾经在1987年就这个猜想给出尖锐的评价:
并封闭集合猜想确实很有名,除了它的起源和它的答案。
为了解决这个问题,数学家们也已经尝试过不少方法。
例如有人试着给猜想加上一些限制条件,让它在这些情况下成立。
像是将它和图论中的二分图(BipartiteGraph)联系起来,证明具备其中某种性质的集族,在这个猜想的条件下成立。
又或是给其中的元素加以限制,再加以证明……
BUT,无论是哪种方法,距离真正需要证明的猜想都还差不少距离。
来自哥伦比亚大学的助理教授WillSawin对此评价称:
它看起来似乎是个不难解决的东西,毕竟长得和那种“容易解决的问题”
很像。
然而,如今却没有任何一个证明能真正搞定它。
问题就这样进度缓慢,直到2022年秋天,谷歌研究员JustinGilmer借着朋友结婚的契机,回到了罗格斯大学校园。
Gilmer回母校的时间是2022年10月,此时距他毕业离开数学学术圈,已过去7年。
这些年来,他自觉无心专注纯数学领域,转而自学编程,投身了IT行业。
此次返校,他拜访了导师萨克斯,还四处转了转。
就在散步中,他突然回忆起——当年自己徘徊于校园小径,苦苦思索的一个数学问题:
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
别跟我讲道理,你敢动我的人,我就叫你知道这世界有多可怕!(超萌狐狸精化身护短狂魔!)推荐我的快穿文→头号炮灰综时空历练记综我的专栏里有许多完结文哦→兰桂专栏入文将于1月18日入V,届时三更,希望大家能多多支持,爱你们哟!么么哒づ ̄3 ̄づ正版读者群企鹅号59722091头号炮灰综(快穿苏...
与世无争,与人无忧,碧天海阔的海岛,广阔无边的牧场,历史沉淀的庄园,没事考考古,发掘发掘史前文明,没事修修仙,畅游天地之间...
不要了疼。忍一忍,马上就好了。男人抓住她的手,为她擦药。男朋友敢玩劈腿,她就敢给他戴绿帽子。她倒是要看看,最后谁先玩死谁。只是,三无老公摇身一变竟然成为了A国人人趋之若鹜的新贵,苏简溪接受无能。她的丈夫确实没车没房,但人家有别墅有游轮还有私人飞机啊。都说苏简溪是狐狸精,傍上金主不说,还让人家当了接盘侠。事后还是厉霆骁亲自辟谣是他追的苏简溪,孩子是亲生的!...
王清歌穿越到平行世界,一名被家人赶出家门,又被女友分手的废物身上,并获得了娱乐逆袭系统。从此这个世界少了个废物,多了个娱乐天王,作曲天才,他的每一首歌总能让无数人闻之泪目。别人对他的评价,永远只有一句,那就是他到底被多少人伤过?他到底经历过什么样的事。在怎样的绝境下,才能写出如此伤感又动听的歌曲来。...
三流中医大学学生林天成,和手机合体之后,一个手电筒应用,便能让林天成拥有夜视透视能力。美图秀秀,360杀毒等等应用,又能带给他怎样的惊喜?...
原生家庭的伤害有多大,或是自卑懦弱,毫无自信或是暴力成性,锒铛入狱亦或撕裂婚姻,妻离子散无数次痛彻心扉的感悟后,有的人,用一生来治愈童年有的人,用童年治愈一生。...