手机浏览器扫描二维码访问
18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(BrookTaylor),于1685年8月18日在英格兰德尔塞克斯郡的埃德蒙顿市出生。
1701年,泰勒进剑桥大学的圣约翰学院学习。
1709年后移居伦敦,获得法学学士学位。
1712年当选为英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。
并于两年后获法学博士学位。
从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。
1717年,他以泰勒定理求解了数值方程。
泰勒以微积分学中将函数展开成无穷级数的定理着称于世。
泰勒在无聊的玩GeoGebra,里面有个公式:
Y=A0+A1x+A2x^2+A3x^3+A4x^4+A5x^5+A6x^6+A7x^7+A8x^8+A9x^9
然后无聊的拨弄着滑动条来随意改变这些个A值。
屏幕上函数图像不断变化着,但那线条总是歪七八扭,不听使唤。
他认真了起来,扩大了A值的范围和精度,逐渐找到规律之后,他已经能够调出剑尖,牙齿,猫耳等图像。
他不断增加项数,调整参数,他发现增加的项数越多,他就越能掌控图像的变化。
他像扭铁丝似的上下弯折着曲线,无意中调出了一段波浪形的图像,看着似乎挺眼熟……
——这不是sin函数吗!
他抑制不住自己的兴奋,赶紧输入了标准的sin函数进行对比,同时继续调整多项式,使这个山寨函数尽可能地贴近正品。
他仔细端详着,单看眼前这一段,简直可以以假乱真,不过越到后面,分歧也就越明显了。
他猛然意识到:“我能够控制多项式画出任意图像!
甚至把它伪装成其他函数!
“
但是他很快冷静了下来,问了自己一连串的问题:所谓的任意,可以是无限制的任意吗?我能否完美地“伪装“出一个目标函数?如果不能,那又能够伪装到何种程度?摆在眼前的具体问题就是,能否“伪装“出一个完美的sin函数?
他决定一探究竟。
如果存在某n次多项式等于sin(x);则其导函数也等于sin(x)的导函数;它的二阶导也等于sin(x)的二阶导;它的三阶导也等于sin(x)的三阶导;
……它的n阶导也等于sin(x)的n阶导。
可是,每求导一次,多项式就会降一阶。
求到n阶导不就变成常数了吗?
再导不就归零了吗!
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
他是东临齐王,曾经叱咤沙场的战神,一场战事一个阴谋毁了他的骄傲她是安庆大将之女,一场背叛一场退婚毁了她的声名。一场上位者不怀好意的赐婚把本不该有交集的两个人硬生生凑到了一起,她一心保护好自己,但她只考虑到要怎么在那个男人眼皮底下安然脱身,却从未想过若是在那个男人那里丢了心该怎么办。她知道她无论如何不能替代他心中的那人,她只想他好好的。她倾尽所有的付出好不容易换来他一丝的怜惜,却在另一个女子的算计中一点点被磨光,她的心也在一次一次的伤害中渐渐冷了,之后他更是轻易被人挑唆认定她不衷,她终于心死离开,放两人自由。可总有人不愿放过她,想夺她性命永绝后患,多年后她再次回来时,又会书写怎样的爱恨情仇。...
嫁给这个比她大十多岁的汉子是喜如做梦都没想到的这个男人什么都好,就是块头太大,跟一座小山似的,腿长胳膊粗,还不太爱说话汉子对她特别好,还不嫌她长得丑,唯一不好的就是看她的眼神总像想把她吃了汉子小山一样挡在娇妻面前,喘着粗气阿如,今晚我们洞房吧。喜如往他身上看了看,表示很害怕,我不要,太太汉子...
新书邪王要入赘火热更新中,求收藏求推荐O她是BUG一样的存在,史上最难攻略的女BOSS,没有之一。一句话来说这是一个土著女BOSS对抗穿越者重生者任务者的故事欢迎加入安妮普通书友群,群聊号码697934386...
五岁那年救了他,许下成年后的婚约。二十二岁那年,酒吧门口惊险相逢却不相识,从此她顶着他家大恩人的身份,却被坑得泪流满面。哼,黑脸总裁竟然敢把她的仇人当做小时候的她,之月一怒之下带球跑路。某日,粉嘟嘟的小包子气呼呼地指着某张和自己一模一样的脸爸比,想追妈咪请排队!正月夫妇,霸气来袭!本书先坑后宠,后期女主变强,男主妻奴德行,慎入小心出不来!...
宇哥,你会装逼吗?呵,装逼不敢说有多大的造诣,就是天赋异禀!!夏宇点了根两块五的甲天下,扣着脚丫子一脸淡然。...
人人得知顾少爷买了一个小妻子,打不得,骂不得,天天还得哄着!过马路要牵着我的手!吃东西的第一口要先喂我!萧大小姐尾巴翘上天,收复了一块冰山还得天天教他谈恋爱,简直就是为全国人民做贡献。记者问叶小姐,请问顾先生在你眼中是一个什么样的人?萧清欢衣冠禽兽!记者???萧清欢穿着衣服教我大道理,脱了...