手机浏览器扫描二维码访问
1685年,沃利斯(Wallis)出版了《代数》(DeAlgebra),包含了牛顿二项式定理的最早描述。
它也使哈利奥特的卓越贡献为人所知。
二项式定理,是一个a加b的n次方的展开计算。
沃利斯对牛顿说:“你最近在研究什么?”
牛顿说:“二项式定理。”
沃利斯说:“巴斯卡三角,甚至古中国的杨辉三角而已,还有什么好研究?”
牛顿说:“没什么,仅仅是想前进一步。”
沃利斯笑说:“这些东西有用吗?”
牛顿笑着说:“我觉得有很多用,虽看朴素,但里面蕴藏着很多能量。”
沃利斯说:“比如说?”
牛顿说:“我在想开二次方可以计算,就是不断的将小数点后的数字,先写成5,大的让这个数变成4,小了让这个数变成6。
然后一直不断往后写,就可以慢慢的遍历出个无穷的样子。”
沃利斯说:“那又如何,不用二项式,我蒙着这样乘下去不就可以了?”
牛顿说:“开3次,还用这样的办法的话,就困难了,同时开3次以上的话,就更难了。”
沃利斯说:“继续说。”
牛顿说:“我想吧二项式中的n,从整数变成分数来计算。
也可以。”
沃利斯说:“如果是整数,可以有帕斯卡三角,或者是一种组合公式来表示系数。
分数的你该怎么办呢?”
牛顿说:“很容易,把那个组合公式中的n也变成对应的分数,甚至负数都可以。”
沃利斯抬头开始想牛顿说的这个组合公式的变化。
沃利斯开始去写1加x的负一次方的展开,写成了无穷的形式,等于1减去x的平方加x的二次方减x的三次,一直到无穷。
因为组合方程计算出来的是1和-1这两个数字的交替。
x的奇数次方的系数是负一,x的偶数次方的系数是正一。
疑惑的说:“等等,变成负数我还可以想象,变成分数这还用意义吗?”
牛顿说:“为什么没有意义,也没有人规定一定是整数呀,你脑子太死板,不知道其中的奥秘,这里面有很多有趣的数学意义。”
沃利斯也开始尝试的开始写二分之一次方的组合方程,然后带入到1加x的二分之一次方,也写出了看着复杂一些的无穷的级数。
沃利斯看着这个花里胡哨的东西,对牛顿说:“这个东西有作用吗?看着花哨。”
喜欢数学心请大家收藏:(aiquwx)数学心
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
李子秀,那个被称之为最强的男人。有的人觉得他很秀,有人认为他是操作帝,还有人说他是脚本怪。玩家们在跟风他的操作,战队在研究他的战术。他礼貌斯文,是背锅抗压吧老哥的精神领袖。他拥有盛世美颜,是电竞外貌协会最大的遮羞布。他一刀一个LCK顶级选手,是新一代抗韩掌门人。渐渐地,人们开始称呼他为‘李哥’。他也喜欢‘吨吨吨’地...
三百年前,灵气复苏。林曙光重生觉醒,从拔刀开始,征战四方。击杀成功,夺取100000卡血气值获得杀法,一键提升夺无尽气血,铸无敌力量,一路横推,极...
记者采访富豪榜首谢闵行,谢总,请问你老婆是你什么?谢闵行心尖儿宝贝。记者不满足,又问可以说的详细一点么?谢闵行心尖子命肝子,宝贝疙瘩小妮子。这够详细了吧?记者们被塞狗粮,欲哭无泪,准备去采访某小妮子,谢少夫人,请问你丈夫是你什么?...
天地崩解,魔罗入侵,人族拼死抵抗。人族中,执法者不畏生死,血战魔罗,受万人敬仰。修炼者神通广大,有千里神眼顺风神耳起死回生七十二变孔木,便是一位神通广大的执法者。...
许绒晓从来不知道自己能够嫁给欧梓谦是幸还是不幸。她和他的脚步似乎永远都不在一个频率。她爱他时,他不爱她。她拼命讨好时,他厌倦她。终于,她累了,想抽身而退了,他却又缠上来,霸占着她。爱吗?可结婚三年,除了至亲,无一人知道许绒晓是欧梓谦的妻。不爱吗?可她疯了三年,他却不离不弃,每日以挨她一个耳光,换她吃一口饭的方式,把她养的健健康康。哭过,笑过,分过,闹过兜兜转转一圈,他们才终于意识到彼此在生命中存在的意义。欧梓谦是许绒晓的劫,许绒晓是欧梓谦的命!...
这个江湖。有武夫自称天下第二一甲子。有剑仙一剑破甲两千六。有胆小的骑牛道士肩扛两道。但一样是这个江湖,可能是江湖儿郎江湖死,才初出茅庐,便淹死在江湖中。可能对一个未入江湖的稚童来说,抱住了一柄刀,便是抱住了整座江湖。而主角,一刀将江湖捅了个透!临了,喊一声小二,上酒...