手机浏览器扫描二维码访问
杨辉三角形,一目了然,每个数等于它上方两数之和。
研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我发现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”
1050年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”
1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”
1303年朱世杰说:“第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。”
1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”
1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。
可用此性质写出整个杨辉三角。
即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。
即C(n+1,i)=C(n,i)+C(n,i-1)。”
1544年,写过《综合算术》的德国人米歇尔.斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”
斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”
1545年法国的薛贝尔说:“将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。
11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=。”
1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。
1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。”
这个被欧洲人称之为帕斯卡三角形。
1708年的PierreRaymonddeMontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。
1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。”
1730年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。
1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。”
后来人们也称呼这是中国三角形。
二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。
其中是亏格为0的欧拉定理。
对图论有重大帮助。
对很多等差,甚至一级数列、二级数列等等有重要研究。
那三维的杨辉三角,肯定会有更加重要的信息。
高维的杨辉三角,肯定更加有价值。
或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。
或许杨辉三角是任何一个数学的终点。
近下来,就需要解决高维杨辉三角的数列问题了。
有没有一种简单的办法来。
其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。
这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?
喜欢数学心请大家收藏:(aiquwx)数学心
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
(墙裂推荐‘醉华华’的甜妻报到老公,宠上瘾)重生女神学霸√爽文√甜宠√鲜血淋漓,闺蜜和弟弟怂恿她自残说是为了她好,心上人玩弄她说是为了让她快乐,父亲将录取通知书上她的名字换成弟弟的名字,美其名曰女子无才便是德。被亲近之人推入崖底,不料竟是他来替她收尸。带着满腔恨意重活一世,她虐渣弟斗白莲花揍渣男...
一个活在三次元世界,所有的缺点都被无限放大,在这个现实的社会几乎无处遁形的死肥仔,只能在虚拟世界里,追寻自己的青春和梦想。一次从梦中醒来,却发现身边多了一个完美男神,而他竟然是自己笔下的产物!也因为他的出现,她的人生发生了翻天覆地的变化!胖妹变女神,屌丝女作家变大明星?!不,这些都还不够!他说,他会陪她走向世界之颠,去看最高最美的风景!展开收起...
新书影后她又又又翻车了已发布1V1双洁患有嗜睡症的唐诗为了成为一个正常的人,被系统拐去做炮灰逆袭任务。结果第一个任务世界唐诗就差点咆哮,狗东西!为什么在任务世界我还是有嗜睡症?!!!叉腰宿主别生气嘛,女孩子要淑女呀,而且会有一个大惊喜等着你哦。系统一边说一边瑟瑟发抖的躲进小黑屋,谁知道无良宿...
做了一辈子炮灰的周谷儿重生了,重生在她即将被养父卖掉的那一年。重生后的周谷儿表示,这一辈子她的命运要自己掌握,决不再任人宰割。且看她这个炮灰养女如何斗极品,发家致富,收获幸福。...
一座古老神秘的灵术学院,一次密谋无情的审判,连接了平凡与神圣,审判使开始食尽人间烟火,而他开始对抗命运之轮开始转动,一个在寻找罪的救赎,一在寻找爱的归属不可思议的旅途,收集七件圣物,英灵殿,黑白国度,雪域谜城魔族,吸血鬼,影子王国,狼王难以置信的身世,不停的追念,寻找的大哥竟是魔族之人,以男人身份活到至今却发现是女人惊天现世的谎言,她不再是原先那个他接二连三的审判,高冷的审判使竟然是两个!红色的那位貌似很...
大家都是成年人,四王爷不必放在心上!女警官穿越而来,丢了清白之身,还得安抚对方情绪,够霸气!说她又丑又花痴?她破茧成蝶,倾城绝世,不再是任人贱踏的花痴女,锋芒四露,英气逼人,欺她一倍,十倍还之。珠胎暗结,皇上指婚,重口味的王爷当真要娶她?婚后约法三章,说好的互不侵犯隐私。那位四王爷究竟是几个意思?分居不可以,分床也不行,不能和男人约会,看一眼也不行,三百六十度无死角监控...