手机浏览器扫描二维码访问
在17世纪,有一个赌徒德扎尔格向法国着名数学家帕斯卡挑战。
德扎尔格说:“甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。
当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?”
帕斯卡陷入沉思,显然这个要使用概率的知识。
不难得知,甲获胜的可能性大,乙获胜的可能性小。
帕斯卡对赌徒说:“甲输掉后两局的可能性只有二分之一乘以二分之一等于四分之一。”
德扎尔格说:“没错。”
帕斯卡说:“那甲赢得后两局或后两局中任意赢一局的概率为一减去四分之一,为四分之三。”
德扎尔格说:“你的意思是甲赢得可能性高,让甲拿100法郎吗?”
帕斯卡说:“当然不对了,因为乙获胜可能性虽然低,但也有获胜可能性。”
德扎尔格说:“那怎么办?”
帕斯卡说:“虽然你们不能赌了,但是有概率所导致的期望,按照这个期望来。
甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(12)*(12)=14,即乙有25%的期望获得100法郎奖金。”
德扎尔格一边听了,一边也开始心算,帕斯卡继续说:“可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75法郎,乙应分得奖金的的100×25%=25法郎。”
德扎尔格听了,觉得很有道理。
帕斯卡分布,负二项分布的正整数形式,描述第n次成功发生在第x次的概率,是统计学上一种离散概率分布,常用于描述生物群聚性,医学上用来描述传染性或非独立性疾病的分布和致病生物的分布。
满足以下条件的称为帕斯卡分布:
1.实验包含一系列独立的实验。
2.每个实验都有成功、失败两种结果。
3.成功的概率是恒定的。
4.实验持续到r次失败,r可以为任意正数。
成功发生一次的,是几何分布。
喜欢数学心请大家收藏:(aiquwx)数学心
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
李子秀,那个被称之为最强的男人。有的人觉得他很秀,有人认为他是操作帝,还有人说他是脚本怪。玩家们在跟风他的操作,战队在研究他的战术。他礼貌斯文,是背锅抗压吧老哥的精神领袖。他拥有盛世美颜,是电竞外貌协会最大的遮羞布。他一刀一个LCK顶级选手,是新一代抗韩掌门人。渐渐地,人们开始称呼他为‘李哥’。他也喜欢‘吨吨吨’地...
三百年前,灵气复苏。林曙光重生觉醒,从拔刀开始,征战四方。击杀成功,夺取100000卡血气值获得杀法,一键提升夺无尽气血,铸无敌力量,一路横推,极...
记者采访富豪榜首谢闵行,谢总,请问你老婆是你什么?谢闵行心尖儿宝贝。记者不满足,又问可以说的详细一点么?谢闵行心尖子命肝子,宝贝疙瘩小妮子。这够详细了吧?记者们被塞狗粮,欲哭无泪,准备去采访某小妮子,谢少夫人,请问你丈夫是你什么?...
天地崩解,魔罗入侵,人族拼死抵抗。人族中,执法者不畏生死,血战魔罗,受万人敬仰。修炼者神通广大,有千里神眼顺风神耳起死回生七十二变孔木,便是一位神通广大的执法者。...
许绒晓从来不知道自己能够嫁给欧梓谦是幸还是不幸。她和他的脚步似乎永远都不在一个频率。她爱他时,他不爱她。她拼命讨好时,他厌倦她。终于,她累了,想抽身而退了,他却又缠上来,霸占着她。爱吗?可结婚三年,除了至亲,无一人知道许绒晓是欧梓谦的妻。不爱吗?可她疯了三年,他却不离不弃,每日以挨她一个耳光,换她吃一口饭的方式,把她养的健健康康。哭过,笑过,分过,闹过兜兜转转一圈,他们才终于意识到彼此在生命中存在的意义。欧梓谦是许绒晓的劫,许绒晓是欧梓谦的命!...
这个江湖。有武夫自称天下第二一甲子。有剑仙一剑破甲两千六。有胆小的骑牛道士肩扛两道。但一样是这个江湖,可能是江湖儿郎江湖死,才初出茅庐,便淹死在江湖中。可能对一个未入江湖的稚童来说,抱住了一柄刀,便是抱住了整座江湖。而主角,一刀将江湖捅了个透!临了,喊一声小二,上酒...