手机浏览器扫描二维码访问
没错,就是那个对“并封闭集合猜想”
的证明。
读博期间,Gilmer绞尽脑汁,花了一整年时间却毫无进展,只是搞明白了为什么这一看似简单的问题难以解决。
为此,他还去找过导师萨克斯。
但导师也曾在该问题上停滞不前,因而他既不看好Gilmer的研究,也不愿重新碰这一领域。
据Gilmer回忆,当时导师差点把他赶出房间。
但现在,重回校园转一圈的Gilmer有了个新想法:用信息论及相关原理解决并封闭猜想问题。
Gilmer的思路是找反例。
根据并封闭集合猜想,一个正常的并封闭集族中,至少应该有一个元素在多于一半的集合中出现。
既然如此,只要想办法构造一个特殊的集族,里面没有一个元素出现在超过1%的集合中,这个猜想就会被证伪,反之如果构造不出来,那么猜想就可能成立。
现在,我们用信息论视角看这一猜想:
正常来说,如果从集族中任意挑出两个集合,这两个集合取并集后,并集中的元素比原来两个集合更多,其信息熵应该比原来的单独两个集合更低。
然而如果基于“没有一个元素出现在超过1%集合”
这个限制条件,任意两个集合取并集后,计算出来的信息熵竟然比原来的单独两个集合更高。
这显然是不可能的,因此不存在这么一个特殊的集族,Glimer的反例也没有找到。
但这也就意味着在“并封闭”
集族中,至少存在一个元素,会出现在超过1%的集合中。
2022年11月16日,Gilmer将这一思路写成论文,发表在了arXiv上。
当然,他这篇论文还不是“完全体”
,也就是说并没有完全证明并封闭集合猜想——
毕竟这只是至少1%,还不意味着原来的并封闭集合猜想中的至少50%就成立。
但这个新思路已经足够让学界震动。
普林斯顿大学数学家RyanAlweiss评价“引入信息量”
这一操作:非常聪明。
仅仅几天后,就有3个不同的数学研究组基于他的研究,先后发表了研究论文,随后也有更多研究者跟进,他们所在院校机构有牛津、普林斯顿、哥大、布里斯托等。
在后续研究中,对“并封闭集合猜想”
的概率值证明,被推进到了38%。
令这些数学家好奇的是,基于Gilmer的研究,他自己上手将概率值推进到38%并不难。
对此,Gilmer表示,自己已经五年多没碰数学了,确实不知道如何进行分析工作来将其进一步推进下去。
不过,他也认为,正是因为对相关数学方法的生疏,让他跳出了常理,用圈外办法取得突破。
喜欢数学心请大家收藏:(aiquwx)数学心
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
原生家庭的伤害有多大,或是自卑懦弱,毫无自信或是暴力成性,锒铛入狱亦或撕裂婚姻,妻离子散无数次痛彻心扉的感悟后,有的人,用一生来治愈童年有的人,用童年治愈一生。...
...
一个被人称作傻子的孤儿,竟然是万年之前神界帝尊转世!封天大盾下,群魔乱舞!玄宝携鸾后与十八帝妃,找回三大圣宝,平魔乱,归元一,统一白鸾,重登帝位!面对来自神界灵界冥界人界四界众生对圣宝和神帝之位的觊觎和阻拦,玄宝携五大兵团,扬玄尊大旗,洒男儿热血,平四界之乱,祈万民之福!...
嫁给这个比她大十多岁的汉子是喜如做梦都没想到的这个男人什么都好,就是块头太大,跟一座小山似的,腿长胳膊粗,还不太爱说话汉子对她特别好,还不嫌她长得丑,唯一不好的就是看她的眼神总像想把她吃了汉子小山一样挡在娇妻面前,喘着粗气阿如,今晚我们洞房吧。喜如往他身上看了看,表示很害怕,我不要,太太汉子...
送豪宅名车奢侈品包包,这是日常宠。陪她作天作地虐渣渣,这是基本宠。重生前,她被欺被骗被换人生,深爱他却不敢表白,凄惨而死。重生后,她逆袭报仇发家致富,专心爱他,从此走上人生颠峰。她说宁先生,今生有你足矣!...
不要叫我后妈,我没你那么大的儿子!艾天晴一直以为自己要嫁的人是一个快六十的老头,直到某天晚上那个邪魅冷血的男人将她抵在了门上,从此她的日子就...