手机浏览器扫描二维码访问
Calabi-Yau也在数学中引发了一系列重大的进展,如超弦学家Candelas等人通过研究不同的Calabi-Yau流形给出的相同的超对称共形场论所发现的镜对称猜想。
这个猜想由丘成桐、连文豪与我以及Givental独立证明,它解决了代数几何中遗留了上百年的舒伯特(Schubert)计数问题。
大概在格林恩与普列瑟的论文发表一年后,镜对称的下一步发展攫取了数学社群的注目。
坎德拉斯、德拉欧萨(XeniadelaOssa)、保罗·葛林(PaulGreen,马里兰大学)、帕克斯(LindaParks)四人证明了,镜对称可以帮忙解决一个代数几何学与“枚举几何学”
(enumerativegeometry)中的难题,这是超过数十年未解的问题。
坎德拉斯团队所研究的是五次三维形的问题,这个问题也称为舒伯特问题,舒伯特(HermannSchubert)是19世纪的德国数学家,他解决了这个难题的第一部分。
所谓舒伯特问题是计数在五次卡拉比—丘流形上“有理曲线”
(rationalcurve)的数目,其中有理曲线是像球面一样,亏格为零或没有洞的曲线(实二维曲面)。
计数这些东西听起来像是种古怪的消遣,但如果你是个枚举几何学家,那么这就是你每天的主要工作。
不过这个工作丝毫不简单,绝不像把罐子中的太妃糖倒到桌上数一数而已。
如何计数流形上的物件;如何为问题找到正确架构,使得计数所得到的值有用,百余年来一直是数学家的挑战。
举例来说,如果想让最后计数出来的数值是有限而不是无限的话,我们能计数的对象就必须是紧致空间,而不能像是平面那样的空间。
又例如要计数的是曲线的交点数,这时相切(轻触彼此)的情形就会造成麻烦。
枚举几何学家发展了许多技术来处理这些情况,希望最终的结果是离散的数。
这类问题最早的例子出现于公元前200年左右,希腊数学家阿波罗尼斯(ApolloniusofPerga)曾经提问说:“给定三个圆,有多少圆可以同时和这三个圆相切?”
这个问题的一般答案是八,并且可以用直尺与圆规来解答。
但是要解决舒伯特问题,则需要更精密的计算技巧。
数学家处理这个难题的方式是逐步处理,每一步只处理一个固定的“次数”
(degree)。
这里所谓次数,指的是描述曲线的多项式中各项的最高次数。
例如4x2-5y3是三次多项式,6x3y2+4x是五次(x和y的次数要加起来),2x+3y-4是一次。
如果令2x+3y-4等于零(2x+3y-4=0),就可以定义一条线。
因此这个问题是先取出五次三维形,指定有理曲线的次数,然后问说有多少这样的曲线。
舒伯特解出了次数是一的情况,他证明五次三维形有2875条线。
大概一个世纪之后的1986年,现在任职于伊利诺斯大学的卡兹(SheldonKatz)解出二次的情况,二次有理曲线数等于。
坎德拉斯、德拉欧萨、葛林、帕克斯解决的是三次的情形。
不过他们的解法运用了镜对称的想法,因为想要直接在五次卡拉比—丘流形上解这个问题极端困难,但格林恩与普列瑟所构造的镜伴流形,提供了容易得多的解题框架。
事实上,在格林恩与普列瑟关于镜对称的原来论文中,就已经指出这个基本的思路。
他们说明汤川耦合这个物理量,可以用两种差异很大的数学公式来表示,一种来自原来的流形,另一种来自镜流形。
一个公式牵涉流形中不同次数的有理曲线数,根据格林恩的说法,计算起来绝对是很“恐怖”
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
别跟我讲道理,你敢动我的人,我就叫你知道这世界有多可怕!(超萌狐狸精化身护短狂魔!)推荐我的快穿文→头号炮灰综时空历练记综我的专栏里有许多完结文哦→兰桂专栏入文将于1月18日入V,届时三更,希望大家能多多支持,爱你们哟!么么哒づ ̄3 ̄づ正版读者群企鹅号59722091头号炮灰综(快穿苏...
与世无争,与人无忧,碧天海阔的海岛,广阔无边的牧场,历史沉淀的庄园,没事考考古,发掘发掘史前文明,没事修修仙,畅游天地之间...
不要了疼。忍一忍,马上就好了。男人抓住她的手,为她擦药。男朋友敢玩劈腿,她就敢给他戴绿帽子。她倒是要看看,最后谁先玩死谁。只是,三无老公摇身一变竟然成为了A国人人趋之若鹜的新贵,苏简溪接受无能。她的丈夫确实没车没房,但人家有别墅有游轮还有私人飞机啊。都说苏简溪是狐狸精,傍上金主不说,还让人家当了接盘侠。事后还是厉霆骁亲自辟谣是他追的苏简溪,孩子是亲生的!...
王清歌穿越到平行世界,一名被家人赶出家门,又被女友分手的废物身上,并获得了娱乐逆袭系统。从此这个世界少了个废物,多了个娱乐天王,作曲天才,他的每一首歌总能让无数人闻之泪目。别人对他的评价,永远只有一句,那就是他到底被多少人伤过?他到底经历过什么样的事。在怎样的绝境下,才能写出如此伤感又动听的歌曲来。...
三流中医大学学生林天成,和手机合体之后,一个手电筒应用,便能让林天成拥有夜视透视能力。美图秀秀,360杀毒等等应用,又能带给他怎样的惊喜?...
原生家庭的伤害有多大,或是自卑懦弱,毫无自信或是暴力成性,锒铛入狱亦或撕裂婚姻,妻离子散无数次痛彻心扉的感悟后,有的人,用一生来治愈童年有的人,用童年治愈一生。...