456小说网

456小说网>数学心得体会500字 > 第三百三十一章 李代数群论(第1页)

第三百三十一章 李代数群论(第1页)

索菲斯·李意识到矩阵计算的内在复杂性,这是因为行列式那种奇怪的计算性质导致的。

还有,就是对矩阵这个含义的理解,本身也有很多层次的内在复杂性。

其中就有非对易性,这是最重要也难以避免的一个性质。

由于矩阵计算的特殊性,和矩阵本身含义的深邃性,他发现了一种关于矩阵计算的特殊代数。

只是,想着有些复杂,也许有用,还是更加深的用途。

所以对其解释,需要专门引入一个严谨的说法,肯定是有关矩阵一类的。

李与克莱因开始讨论关于矩阵计算的一些问题:“我想研究一种代数,就是那种不符合交换律的那种。”

克莱因说:“我知道,矩阵绝大部分都不符合。”

李说:“也不符合结合律。”

克莱因说:“这个有意思了,细细想想,其实矩阵不符合结合律。

我们应该建立一种新型代数了,名字就叫非结合代数。”

李说:“非结合代数是很宽泛的,我知道的非结合的代数,是通过矩阵的性质得来的。

但是,我总觉得,不仅仅限于矩阵是这样的,就是其他那些我还不知道的其他数学结构,也会有这个。”

克莱因在想:如果是超出矩阵的其他代数,也是可以表示非结合代数的,也不无可能。

但是还有一种可能性,那就是任何代数都弄用矩阵来表示,就看会不会表示。

克莱因说:“到了现在,如果想要在数学上有突破。

我们要在新的数学领域大展拳脚,只需要去规范一些极其简单的数学法则,如果规划好那些看似简单的法则后,我们就可以以此为基础去扩张自己的优美而繁华的版图了。”

李说:“我们的梦。

只是这个非结合代数,给人一种在思考上很别扭的感觉。

又需要依赖有些难度但很重要的群论的结构。”

克莱因说:“我们已经离不开群了,那些不爱学习群论的人,不要再碰数学。”

李说:“非结合代数是环论里的一个分支,虽与结合代数有关,但是去掉了乘法结合律。

这个东西难免存在,毕竟数学是广泛到人类不会轻易政府的程度。

发现了非交换的,那离非结合的还远吗?”

克莱因笑得肚子都疼了,对李说:“你要是用这种变态的思维研究数学,说不定整合上帝创造万物的脾气。

就是想这个模型不好想。”

后来,索菲斯·李创立李群。

已完结热门小说推荐

最新标签